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ABSTRACT 

Nondestructive evaluation (NDE) has been extensively used for investigating the integrity 

of materials and characterizing cracks or defects . We present methods for detecting NDE de

fect signals in correlated noise having unknown covariance. The proposed detectors are derived 

using the statistical theory of generalized likelihood ratio (GLR) tests and multivariate analysis 

of variance (MANOVA). We consider both real and complex data models for data sets obtained 

from multiple experiments. To allow accurate estimation of the noise covariance, we incorpo

rate secondary data containing only noise into the detector design. Probability distributions of 

the GLR test statistics are derived under the null hypothesis, i.e. assuming that the signal is 

absent, and used for the detector design. We also develop a nwnerical method for computing 

the exact decision threshold that guarantees a spec ified probability of false alarms. We ap

ply the proposed methods to simulated and experimental data and demonstrate their superior 

performance compared with the detectors that neglect noise correlation. 
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CHAPTER 1. INTRODUCTION 

In the recent years, nondestructive evaluation (NDE) has been extensively used as a major 

methodology for investigating the integrity of materials and characterizing cracks or defects. It 

has been applied to several applications in industrial inspections such as crack detection in air

plane wheels and investigation of steam generator tubes in nuclear power and chemical plants. 

Undesirable cracks or defects may originate in a material during manufacturing, or from fatigue 

or stress corrosion during service. The proper inspection and monitoring of the presence of de

fects are necessary and critical in order to assure the quality of products during manufacturing 

processes and also the reliability of systems which consequently can prevent accidents that can 

cost human lives. It also helps predicting the remaining life of the structural components. A va

riety of methods for NDE have been developed in response to the raising demands of industries 

such as eddy current [1] , ultrasonic [2] , and X -ray radiography [3]. 

Eddy-current inspection is a testing technique using the principle of electromagnetism as 

the basis for conducting examinations. Eddy current is generated by electromagnetic induction 

when alternating current is applied to a conductor such as copper wire. For defect detection, 

generally, an eddy-current probe consists of two sets of coils, the excitation or primary and the 

pick-up or secondary, arranged in a transformer fashion, see Figure 1.1. When the alternating 

current is applied to the excitation coil, it creates a magnetic field around the coil and induces 

eddy cutTents in the examined material. The pick-up coil acting as a detector will determine 

the change of impedance and phase corresponding to the change of conduction in the material. 

The concept of this probe provides an enhanced signal-to-noise ratio (SNR) for detection and 

significant advantage especially in the case when deep penetration is needed such as internal 
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defect inspection. 

In ultrasonic inspection, high frequency sound energy is used to conduct examinations. An 

ultrasonic probe generally consists of the pulser/receiver, transducer, and measuring units. The 

pulser generates and sends a high voltage electrical pulse into the transducer. The high voltage 

energy is transformed into ultrasonic signals by the transducer and transmitted into an examined 

object in a wave form. The propagated waves are reflected back to the receiver as echoes when 

they reach the boundary of discontinuities such as the edge of the material, cracks, or defects. 

The reflected signals are reconverted into electrical signals by the transducer and then measured 

by the measuring units. This technique is generally used for detecting and classifying crac~ 

or defects and also determining the size, orientation, and position of the reflectors. Figure 

1.2 demonstrates how the ultrasonic signal is transmitted into the material and responds to the 

boundary of the material and crack. The strength of the received signal is plotted against the 

signal travel time. 

Another common testing technique for NDE is X -ray radiography. This technique uses the 

principle of electromagnetic radiation. By this principle, a stream of electrons is energized and 

accelerated into a high velocity. Energy in the form of photons (or X -ray in this case) is emitted 

when the charged particles (electrons) are deaccelerated. This resulting X -ray beam is widely 

used to produce radiographs of materials and objects to locate internal cracks and other defects. 

The detectors can be films or a sensor array of light-sensitive photocells called Charge-Coupled 

Device (CCD), see Figure 1.3. 

In the measurement processes of the methods above, undesirable noise is caused by several 

reasons such as the imperfection of measuring sensors, the nature of medium (e.g. grain noise), 

and interference from the surrounding environment, etc. In general, noise is modeled as random 

variables and its behavior is described by statistical distributions. By applying the Central 

Limit Theorem (CLT) [4, Ch. 5.5] , we may use a normal or Gaussian distribution for noise 

models. The problem of interest is how to determine and account for noise correlation between 

measurement locations. In the NDE applications, the noise correlation is typically caused by 
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ca backscattered grain in ultrasonic NDE systems [5]and 

• random liftoff variations in eddy-current systems [ 1 ]. 

Accounting for noise correlation in material inspection can significantly improve defect detec

tion performance. This thesis primarily focuses on defect detection using statistical analysis. 

We introduce methods for detecting defects in two-dimensional images with correlated noise. 

The noise is assumed to be correlated between rows of data matrices having unknown covari

ance. The proposed detectors are derived using the statistical theory of generalized likelihood 

ratio (GLR) tests and multivariate analysis of variance (MAN OVA) (see [6] for a tutorial pre

sentation of MANOVA and [7, Ch. 6.4.2] for the definition of the GLR test). We consider real 

and complex data models and single- and multiple-trial measurement scenarios. For each data 

matrix under test, we assume that a noise-only matrix is available and utilize both the data and 

noise-only matrices to estimate the noise covariance. To decide if a defect is present, the GLR 

test statistic is compared with a threshold. We derive exact and approximate probability distri

butions of the GLR test statistics under the null hypothesis (signal absent)_ and use them to find 

the threshold that guarantees a specified probability of false alarms. 

The rest of this thesis is organized as follows. In Chapter 2, we first introduce signal and 

noise models under single- and multiple-trial scenarios. We then present the GLR detectors for 

real and complex data models. Furthermore, we demonstrate the derivation of the exact dis

tribution used to determine a decision threshold for a specified probability of false alarms. In 

Chapter 3, the proposed methods have been applied to simulated eddy-current, experimental ul

trasonic, and experimental X -ray data, and compared with energy detectors that do not account 

for noise correlation. Finally in Chapter 4, we conclude the thesis by outlining suggestions for 

future work and providing an example algorithm that can improve the detection and eliminate 

false alarms. 
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CHAPTER 2. METHODS AND PROCEDURES 

2.1 Introduction 

The objective of this chapter is to study and discuss the definition of data models, the deriva

tion of the generalize likelihood ratio (GLR) tests, and a proposed method used to determine 

the exact probability distributions and decision rules for the tests. Moreover, we compare the 

accuracy of the proposed algoritlun to traditional approximate methods. 

2.2 Signal and Noise Models 

In this section, we first present signal and noise models for a single experiment (trial) and 

then extend them to the multiple-trial scenario. 

2.2.1 Single Trial 

We consider the problem of detecting the presence of a defect signal in an m x d data matrix 

under testY T· A noise-only data matrix Z of size m x ( N - d) is also assumed to be available. 

Figure 2. 1 illustrates the arrangement of matrices YT and Z. If we do not have any addjtional 

information about the nature of the defect signal, we can choose a nonparametric model for the 

signal mean: 

E [YT] =X, (2.1 ) 

where X is a matrix of unknown parameters and E[·] denotes expectation. For real measure

ments, we further model the columns ofYT as independent Gaussian vectors with an unknown 

fQNUCDU~ 
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Figure 2.1 Matrix under test YT and noise-only matrix Z. 

m x m positive definite covariance matrix :E. The columns of the noise-only matrix Z are 

assumed to be independent zero-mean Gaussian vectors with covariance :E. Similarly, for com-

plex measurements, we assume that (2.1) holds, the columns of YT are independent circularly 

symmetric complex Gaussian vectors with an unknown positive definite covariance :E, and the 

columns of Z are independent circularly symmetric zero-mean complex Gaussian vectors with 

covariance :E. 

2.2.2 Multiple Trials 

In some NDE applications, the experiment in which the measurements are collected is re-

peated J( times to improve the signal-to-noise ratio (SNR). Denote the data matrix under test in 

the kth trial by Y T ,k and the correspondjng noise-only matrix by Z k> where k = 1, 2, ... , K. 

We assume that the defect signal is the same in all trials (independent of k), i.e. 

E [Y T,k] = X , k = 1, 2, 0 0 0 , J( (2.2) 

and that the noise is independent between trials and has the same covariance :E (independent of 

k) in each trial. We also assume that 

Nk 2: m + d, 
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which is needed to ensure that we can estimate :E. This condition follows from [8, App. C] and 

[9, App. B], see also [6, eq. (4)]. 

2.3 Generalized Likelihood Ratio Tests 

We develop the GLR tests for detecting defects based on the above measurement model 

under both real and complex data scenarios. The GLR tests are useful in a case when signal and 

noise parameters are unknown, see [7]. 

2.3.1 Hypothesis Testing 

In order to detect the presence of a defect signal, we test the null hypothesis 1-{0 : X = 0 

(no defect present) versus the alternative 7-{1 : X =/= 0 (defect present). We wish to design a test 

which maximizes the probability of detection (Po) and satisfies the probability of false alarms 

(PFA)· Figure 2.2 shows the probability density functions (PDF) of a test statistic under 'Ho and 

7-{1 and the relation between Po and PFA where in this case, PFA = ?(test statistic > T; 'Ho) 

and Po = ?(test statistic > T; 'H1). If such an ideal test exists for all possible parameter 

values, it is called a uniformly most powerful (UMP) test. Generally, UMP tests do not exist 

for composite hypothesis testing problems. A simple suboptimal solution with good asymptotic 

properties is the generalized likelihood ratio test. To compute the GLR test: 

GLR = ma...'<imum likelihood under 7-{1 

maximum likelihood under 7-{0 

or any monotonic function of the right side and compare GLR with a threshold T. Note that 

for the test statistic above, we need to specify a constraint for PFA ; otherwise we could always 

declare the presence of a defect and have Po = 1 but we also have PFA = 1. 
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25 

Assuming real measurements, to detect the defect signal, we utilize both the data matrices 

under testY T ,k and noise matrices Z k· The GLR test computes the ratio of likelihood functions 

under the two hypotheses, with unknown parameters (X and :E under Ho and :E under H 1) 

replaced by their maximum likelihood (ML) estimates. First, define the sufficient statistics for 

estimating X and :E: 

(2.3a) 

~ 

R - (2.3b) 

where " T " denotes a transpose. The GLR test compares 
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GLR= IRI = 1 
IR- (1/N). y Ty TTl lid- (1/N). y TTR-

1
Y Tl 

(2.4) 

with a threshold, where the presence of a defect is declared if GLR is greater than a thresh-

old. Here I · I denotes the determinant. The above test can be derived using the results of [8] 

and [9], where estimation and detection algoritluns were developed for a more general mea

surement model and applied to the analysis of evoked responses using electroencephalogra

phy/magnetoencephalography (EEG/MEG) arrays. Interestingly, in the scalar case and if the 

zero-mean data is not available (i.e. m = d = N = 1) and after the monotonic transfor

mation v'GLR- 1, the GLR expression (2.4) reduces to the familiar t-test: yj#, where 

Y = ~~=l Yk/K and s2 = E~=1 (Yk- y) 2/K. 

2.3.3 GLR Test for Complex Data 

For complex measurements, the sufficient and GLR test statistics follow by replacing "T" in 

(2.3) and (2.4) with "8 ", respectively, where "8 " denotes the Hermitian (conjugate) transpose. 

Hence, the sufficient statistics and GLR test for a complex data case can be expressed as follows: 

1 K 

- KLYT,k, 
k=l 

-. 1 ~ H H) 
R - NK L.)YT,kYT,k + zkzk , 

k=l 

!ill _ 1 
-. --H- -H--1-
jR-(1/N)·YTYT I IId-(1/N)·YT R YTI 

GLR-

(2.5a) 

(2.5b) 

(2.5c) 
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2.4 GLR Distribution Under Null Hypothesis 

2.4.1 GLR Distribution for Real Data 

For real measurements and under 1-{0 , the probability distribution of 1/GLR is (see Ap

pendix A) 

G~R'"'"' >-. (m, N K- d, d) . 

where ).. denotes the Wilks' lambda distribution. The above Wilks' lambda distribution is the 

distribution of the product of m independent beta random variables with parameters 0 ( N K -

d- i + 1), ~d) , i = 1, 2, ... , m . Since Wilks' lambda distribution does not depend on the 

unknown parameters CE in this case), we can compute a threshold T that maintains a constant 

probability of false alarms. Such a detector is referred to as a constant false-alarm rate (CFAR) 

detector, see e.g. [7]. For large N K - d (i.e. N K - d ~ ma-x{ m, d} ), the following approx-

imation can be used to compute T for a specified false-alarm probability (see e.g. [10, Cor. 

4.2. 1 ]): 

PFA = P{[NK- ~(d + m + 1)] ·ln GLR 2: T} ~ P{x~c~ 2: T} (2 .6) 

or 

PrA - P{(NK- ~(d+m+ 1)] ·lnGLR 2: T} 

2 md(m
2 + d- 5) [ { 2 } { 2 > }] ~ P{Xmd 2: T} + 4S(JV K _ d)2 · p Xmd 2: T + p Xmcl - T 

(2.7) 

for more accuracy, where X~cl denotes a x2 random variable with md degrees of freedom. 

However, the above approximate distributions are not accurate when the number of observations 

is small, for an example, see Figure 2.3. Figure 2.3 demonstrates a scenario in which the 

approximate distributions in (2.6) and (2 .7) do not match the result obtained by Monte Carlo 

simulation [11 , 12]. In this example, we simulate a situation that the test has a small number of 

observations by choosing N = 15 , K = 1, m = 5, and d = 5. The density using Monte Carlo 
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Figure 2.3 Approximate PDFs for a real data scenario when N = 15, K = 1, 

m = 5, and d = 5. 

simulation was calculated by averaging 300,000 realizations over 100 bins. 

To overcome this problem, we develop an algorithm for computing the exact distribution 

of the GLR test, see Appendix C. For real measurements, the PDF of the GLR test can be 

computed using the following infinite series: 

m f( NK- m+j) oo l 
f(

A) = [II 2 ] A'~-1""""' r (-ln .\)r+';d-1 (2.8) 
j=l f CVI<-r;-d+j) ~ f(r + md/2) 

and the GLR threshold for a specified PFA can be determined by solving the following equation: 

where,\ = 1/ GLR and rinc(x, a) is the incomplete gamma function at value x with parameter a. 

Here J.L is a constant chosen to satisfy 0:::; J.L < (N K _.:._m-d+1) / 2; lo = 1, lr = 2:~=1 k qk lr-k• 
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and 

qk = (-1l+1 [k(k+1)t1{fBk+I(NK - ~ -d+j -p,) 
j=l 

~ ( N K-m + j )} - ~ B k+l 2 - p, I k = 11 21 ... 
j = l 

and Br(·) denotes the Bernoulli polynomial of degree r. (Since PFA is a monotonic function, 

we may apply a bisection method [1 3, Ch. 8.1] to solve the above equation.) Using the same set 

of parameters in the previous example, Figures 2.4 and 2.5 show the superior result compared 

to the traditional approximations. We now compare the PDFs using the above methods in the 

case when the simple form of the PDF is known, i.e. when m = 1, the GLR test has the same 

distribution as a single beta random variable. In this case, we choose N = 8, ]( = 1, m = 1, 

and d = 4. In Figures 2.6 and 2.7, the PDF using the proposed method provides a superior 

result which exactly matches the theoretical PDF whereas the approximate methods do not. 

Table 2. 1 demonstrates the comparison of the GLR thresholds obtained from various methods 

in the case when the simple form of the PDF is known (m = 1). Obviously, the proposed 

method outperforms the traditional approximations. However, when the number of observations 

increases, the thresholds obtained from the approximate methods asymptotically approach the 

thresholds obtained from the theoretical PDF. 

2.4.2 GLR Distribution for Complex Data 

For complex measurements and under H 0 , 1/ GLR follows the complex Wilks' lambda 

distribution, see e.g. [14] , and it can be represented by the product of m independent beta 

random variables with parameters (N K- d- i + 1, d) , i = 1, 21 ••• 1 m . As in the real case, 

the resulting detector is CFAR. For large N J(- d, the traditional approximation for computing 
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Table 2.1 Comparison of thresholds obtained from various methods under a real. 
data scenario. Here, 1, 2, 3, and 4 denote thresholds obtained from the 
theoretical PDF, proposed method, x2 approximation, and accurate x2 

approximation, respectively. 

NK-d d PFA (%) 
Thresholds m 

1 2 3 4 
1 4 4 2 11 .8994 11.8994 10.3147 10.3147 
1 4 4 1 16.9770 16.9770 14.2300 14.2300 
1 4 4 0.5 24.1545 24.1545 19.5300 19.5300 
I 6 4 2 5.5729 5.5729 5.2954 5.2954 
1 6 4 1 7.0988 7.0988 6.6637 7.0986 
1 6 4 0.5 9.0183 9.0183 8.3547 8.3547 
1 16 4 2 1.9934 1.9934 1.9864 1.9864 
1 16 4 1 2.1931 2. 193 1 2. 1836 2.1 836 
1 16 4 0.5 2.4094 2.4094 2.3967 2.3967 

the threshold r for a specified false-alarm probability is as follows: 

PFA = P{(2NK- d- m - 1) ·ln GLR ;::: r } ~ P{x~md;::: r} (2.1 0) 

By applying the same method as in the real case, the exact PDF of the GLR test for the complex 

case can be represented by the following infinite series: 

! (>-) = [IT r(N K- m + j ) ] )._JL-1 f lr (-In >-r+md- 1 (2.11 ) 
j=l r (N K - m - d + j) r = O f (T + md) 

and the GLR threshold for a specified P FA can be determined by solving the following equation: 

[rrm r (NK- m + j)] ~ lr 
PFA = P(GLR > r) = 1 - j=l r (NK -m+ j) ~ f.L(7·+md)Cnc(J.LlOgr, T+md) (2.1 2) 
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where J.L is a constant chosen to satisfy 0 :::; J.L < (N K-m- d + 1); l0 = 1, lr = :2::::~= 1 kqklr-k, 

and 

m 

qk ( -1)k+1[k(k + 1)t1
{ L Bk+l(N K- m- d + j- J.L) 

j=l 

m 

- L B k+ 1 ( N K - m + j - J.L)} , k = 1, 2, .. .. 
j=l 

Figures 2.8 and 2.9 shows the comparison ofPDFs using Monte Carlo simulation and the meth-

ods above when N = 20, K = 1, m = 5, and d = 5. Figure 2.10 shows the comparison of 

PDFs when the theoretical PDF is known. Here, N = 8, K = 1, m = 1, and d = 4. Table 

2.2 demonstrates the comparison of the GLR thresholds obtained from various methods in the 

case when the simple form of the PDF is known. As in the real case, the proposed method 

outperforms the traditional approximation. 

Table 2.2 Comparison of thresholds obtained from various methods under a com
plex data scenario. Here, 1, 2, and 3 denote thresholds obtained from 
the theoretical PDF, proposed method, and x2 approximation, respec
tively. 

m NK - d d PFA (%) 
Thresholds 

1 2 3 
1 4 4 2 5.7899 5.7899 6.1521 
1 4 4 I 7.0288 7.0288 7.4559 
1 4 4 0.5 8.4959 8.4958 8.9842 
1 6 4 2 3.4932 3.4932 3.6609 
1 6 4 I 3.9995 3.9995 4.1996 
1 6 4 0.5 4.5633 4.5633 4.7979 
1 16 4 2 1.6855 1.6855 1.7063 
1 16 4 I 1.7816 1.7816 1.8055 
1 16 4 0.5 1.8802 1.8802 1.9073 
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2.5 Mean-Data Energy Detector 

In all numerical examples, we compare the proposed method with the CFAR energy detector 

- - }( 
(ED) for the mean data Y T and Z = Lk=I Z k/ K. For real measurements, the ED compares 

(2.13) 

with a threshold TEo , where the presence of a defect is declared if ED > T ED · The above 

test statistic has an SNR interpretation. The numerator in (2.13) is simp1y the sum of squared 

magnitudes of the mean data Y T• which is an estimate· of the overall power in the window 

under test. Similarly, the denominator in (2.13) is the sum of squared magnitudes of the (mean) 

noise-only data Z, which is an estimate of the noise power. Note that the ED does not account 
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for noise correlation. Under rt0 and if the noise is white, ED is distributed as 

ED rv F(md,m(N- d)), (2.14) 

where F(p, q) denotes the F distribution with parameters p and q. For complex measurements, 

the mean-data energy detector follows by replacing "T" in (2.13) with "8 "; then the distribution 

of ED under rlo becomes ED rv F(2md, 2m(N- d)). 
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CHAPTER 3. RESULTS 

3.1 Introduction 

We apply the proposed methods to simulated eddy-current, experimental ultrasonic C-scan, 

and X -ray data and demonstrate their superior performance compared to the Mean-Data Energy 

detectors which neglect noise correlation. 

3.2 Simulated Eddy-Current Data 

We consider a simulation example with ]( = 10 trials. Figure 3.l(a) shows a magnitude 

plot of low-noise experimental eddy-current impedance measurements in a sample containing 

two realistic defects, where each pixel corresponds to a measurement location. The data was 

collected by scanning the testpiece surface columnwise (parallel to they axis). To model liftoff 

variations, we added correlated complex Gaussian noise using autoregressive model AR( l ) as 

follows: 

x(n) = ax(n- 1) + ~(n), n = 0, 1, .. . , M- 1 (3. 1) 

where x(n) are correlated noise, ~(n) are i.i.d. complex· Gaussian noise having zero mean and 

variance CJ2 , and x(O) = ~(0). Here, J\1! denotes the size of a vector and a is a constant chosen 

to satisfy 0 ~ a < 1. We assume thaf the noise is correlated along y direction (i.e. between 

rows) and uncorrelated along x direction (i.e. independent columns). The M x M covariance 

matrix of a column vector x = [x(O) x(1) ... x(M- l )f is symmetric Toeplitz, see [13, Ch. 
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2.5], and is given by 

1 a a2 

a 1 a aM-2 

0'2 
Rx=--

1- a 2 
a2 a 1 (3.2) 

aM-1 aM-2 aM-3 1 

In the experiment, we chose a = 0.9 and a 2 corresponding to the approximate signal to noise 

ratio (SNR) of -10 db. The approximate SNR is given by 

(3.3) 

where E 2 is the energy (magnitude squared) average over the area of the true defects and a~ 

is the diagonal element of the covariance matrix in (3.2), i.e. a~ = a2 /(1 - a2). Matrices 

Zk, k = 1, 2, ... , 10 were generated using noise-only regions Rk. Windows Y T,k of size 

m x d = 10 x 10 were swept across the noisy images, as shown in Figure 3.1(b ). Figure 3.2 

shows the impedance magnitudes averaged over 10 trials. For each location of the window, we 

computed the (logarithms of) 

• the proposed GLR test statistic in (2.4) and 

• the mean-data energy detector for white noise in (2.13), 

see Figure 3.3. The results of the GLR and ED detectors are shown in Figure 3.4. For the 

probability of false alarms PFA = 1%, the GLR threshold was computed using (2.6) and the ED 

threshold was computed by utilizing (2.14). Black pixels correspond to the test values larger 

than the threshold. Clearly, the proposed GLR detector, which accounts for noise correlation, 

outperforms the mean-data energy detector, which breaks down in this scenario. 
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Figure 3. 1 (a) Magnitude plot of low-noise eddy-current measurements with 
peak value normalized to one and (b) a sweeping window Y T ,k and a 
noise-only region R k shown over noisy measurements for one trial. 
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Figure 3.2 Magnitude plot of average data. 



www.manaraa.com

23 

(a) 

20 

·~40 3 
ro 
>-

60 

80 

50 100 150 200 
X axis 

(b) 

X axis 

Figure 3.3 Logarithms of(a) the proposed GLR test statistic and (b) the classical 
ED for multiple trials. 
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Figure 3.4 (a) GLR detector and (b) energy detector for multiple trials, 

PFA = 1%. 
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Figure 3.5 Rotating probe directions over Ti 6-4 billet. 

3.3 Experimental Ultrasonic Data 

We applied the GLR and ED tests to ultrasonic C-scan data from an inspection of a cylin

drical Ti 6-4 billet. The data was collected in a single experiment by moving a probe along the 

axial direction and scanning the billet along the circumferential direction at each axial position, 

see Figure 3.5. The image of the measurements is shown in Figure 3.6 in which the boxes in 

Figure 3.6(a) indicate true defect locations. The vertical coordinate is proportional to rotation 

angle and the horizontal coordinate to axial position. For the ultrasonic data, 

• a measurement at each location is determined from the difference of the maxin1urn and 

minimum values in time series of a testing ultrasonic signal and 

• the defect signal level cannot be smaller than the noise level. 

This provides a constraint that all elements of X are non-negative when the noise mean is 

subtracted. The test statistics under this scenario are given by 

GLR= \R\ . 
min \(1/N) · [zzr + (Y T - X)(Y T- X)T] I 
X t O 

(3.4) 
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Figure 3.6 (a) Magnitude plot of ultrasonic C-scan data with 17 defects and (b) 
sweeping window Y T and a noise-only region W shown over ultra
sonic C-scan data. 

for the GLR test and 

ED N- d Tr(Y TY;') 
- -- 0 --------:::------'---;;....;.__-___ _ 

d min Tr[zzr + (YT - X)(YT- X )T] 
x~o 

N- d Tr(Y TY~) 
-- · 

d Tr[zzr + (Y T- Y~)(YT- Y~)TJ 

(3.5a) 

(3 .5b) 

for the energy detector where X ~ 0 denotes that all elements of X are greater than or equal 

to zero. The estimator of X for the GLR test is determined by minimizing the denumerator in 

(3.4) and the estimator of X for the energy detector, denoted by Y~, is obtained by replacing 

the negative elements of Y T with zero, see Appendix D. Windows Y T and W of dimensions 

5 x 5 and 5 x 35 were swept across the noisy image, as shown in Figure 3.6(a). We selected 

the window W from the data that was previously tested and declared to contain only noise. 

Furthermore, we assume that the noise properties are the same for increasing and decreasing y 

coordinates. Hence, to exploit the stationarity and improve estimation of the noise covariance 

iM"WDflr'P' 
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.E, we generate a noise-only matrix Z using both W and a vertically flipped version of W. 

Note that in this case, m = 5, N = 75, and d = 5. (In each tested area, we compute the 

average of measurements in the region W and subtract it from an observation matrix to obtain 

the matrices Z and Y T·) We also compared the above detectors to a peak-to-average SNR 

method based on [15] and used by General Electric (GE) Corporate Research and Development 

Center for determining the acceptable region of materials. The method compares 

SNRPA = YT,max - ~T 
Zmax- Z 

(3 .6) 

with a threshold TpA where the acceptance of a region is declared when SNRPA is less than 

or equal to the threshold. Here, YT,max: and Zmax denote the maximum values of the testing 

window Y T and the noise-only region W, respectively. yT and z are the average of elements 

in Y T and W. For each location of the window, we computed the (logarithms of) the proposed 

GLR test statistic and the energy detector. The windows were swept from left to right and 

backward as shown in Figure 3.6(b). For the same Y T• denote the GLRs from the first and 

the second sweeps by GLR1 and GLR2, respectively. Similarly, denote the corresponding EDs 

by ED1 and ED2. Figure 3.7 shows [ln(GLR1) + ln(GLR2)]/2 and [ln(ED1) + ln (ED2)] / 2, 

respectively. The presence of a defect is declared if both GLR1 and GLR2 (or ED1 and ED2) 

are greater than a threshold. The detection results are shown in Figure 3.8 for the GLR test and 

energy detectors, where the threshold was chosen to guarantee the probability of false alarms of 

1%. The black pixels correspond to the GLR (or ED) values larger than the threshold. Figure 

3.9 shows the detection result using the original GLR test in Chapter 2 designed without the 

constraint X t 0. For the peak-to-average SNR method in [15] , the windows Y T and W were 

swept for one direction from left to right and we computed SNRPA for each location of Y T · 

The detection results for thresholds TPA = 1.0, 1.5, and 2.0 are shown in Figures 3.1 0, 3.11, and 

3 .12, respectively. Clearly, the proposed GLR detector outperforms the original GLR detector, 

energy detector, and peak-to-average SNR method. 
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Figure 3.7 Average oflogarithms of(a) GLR1 and GLR2 and (b) ED1 and ED2. 
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Figure 3.8 (a) GLR detector and (b) energy detector for PrA = 1%. 
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Figure 3.9 GLR detector without the constraint X t 0 for PFA = 1%. 
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Figure 3.10 Detector using the peak-to-average SNR method for TpA = 1.0. 
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Figure 3. 11 Detector using the peak-to-average SNR method for TpA = 1.5. 
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Figure 3.12 Detector using the peak-to-average SNR method for TpA = 2.0. 

3.4 Experimental X-Ray Data 

We applied the GLR and ED tests to experimental X -ray data from inspections of a motor 

mount with K = 10, see Figure 3.13. Figure 3.14(a) shows a low-noise image of the defects, 

reconstructed using computed tomography (CT) scans and Figure 3.14(b) shows an X-ray im

age averaged over the 10 trials. At the kth trial (where k = 1,2, ... , 10), a window Y T,k and a 

noise-only matrix Z k of dimensions m x d = 5 x 5 and m x ( N - d) = 5 x 35 were swept 

across the noisy images shown in Figure 3.15. For each location of the window, we computed 

the (logarithms of) the GLR test statistic and the energy detector. The results are illustrated 

in Figure 3.16 and the detection results are shown in Figure 3.17 for the GLR test and energy 

detectors, where the threshold was chosen to satisfy the probability of false alarms of 0.1 %. As 

before, black pixels correspond to the GLR (or ED) values larger than the threshold. In this 

example, the GLR and ED expressions yielded similar results. 
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Figure 3.14 (a) Low-noise image of the defects and (b) an X -ray image average 

over 10 trials. 
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Figure 3.15 Sweeping windows y T,k and zk , k = 1, 2, ... l J{ of dimensions 
m x d = 5 x 5 and m x (N - d) = 5 x 20 (respectively) shown over 
the noisy images. 
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Figure 3.16 (a) ln GLR and (b) ln ED. 



www.manaraa.com

32 

(a) 

20 40 60 80 
X axis 

(b) 

...... -
-- _"2F .. . ~ 

100 . - · --·- - .... 
150 

(/) 

-~ 200 
>-

..,. --=---
!! - ;__ -7:~ 

- . ---.-
;;~""' 

350 

20 40 60 80 
X axis 

Figure 3.17 (a) GLR detector and (b) energy detector for PFA = 0.1%. 
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CHAPTER 4. SUMMARY AND FUTURE WORK 

4.1 Conclusion 

We developed generalized likelihood ratio tests for NDE defect detection in correlated noise 

having unknown covariance. The detectors for real and complex data models and their probabil

ity distributions were derived under the noise-only scenario. We also designed the detectors for 

data sets obtained from multiple experiments. In the data models, the noise was assumed to be 

correlated between rows and independent between columns, i.e. we considered the case when 

measurement data is collected along the vertical direction at each position of the horizontal 

direction. We also developed a numerical method for computing the exact distributions of the 

tests used to determine decision thresholds for specified false-alarm probabilities. The proposed 

detectors were applied to simulated eddy-current, experimental ultrasonic, and experimental X

ray data and compared with the constant false-alarm rate energy detector and peak-to-average 

SNR method (for the case of ultrasonic data). The GLR detector outperformed the other meth

ods when model assumptions are satisfied. Otherwise, if the noise correlation is not constant 

(and the same) in Y T and Z regions, or if the noise is not Gaussian, the GLR detector may 

not improve the detection. There are still some problems that remain unsolved such as the op

timum sizes of the testing windows Y T and the noise-only region Z corresponding to defect 

sizes. In addition, we considered the noise only for the Gaussian cases which are not always 

true in practise and it may not be possible to find the numerical form of a true distribution in that 

case. Furthermore, the data model can be designed for more general cases such as th~ model in 

Appendix A in which A and ~ are known. All of these problems require further research. 
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4.2 Future Work 

The further work will include 

• developing the GLR detector for a more general signal-mean model, 

• accounting for noise correlation between columns of the data matrices, and 

• developing a method to improve the detector and remove false alarms. 

In the following section, we present an example method using maximum a posteriori (MAP) 

estimation and hidden Markov models to eliminate false alarms caused by the GLR detector. 

4.2.1 MAP Estimation and Classification Using Hidden Markov Models 

We plan to model the result obtained from the GLR test using hidden Markov models 

(HMMs ), in which the observations are assumed to form a noisy realization of an underlying 

random field that has a simple structure with Markovian dependence. Here, the random field 

describes the defect signal and our goal is to estimate it from noisy measurements. The under

lying spatial statistical methodology incorporates the spatial locations of the measurements into 

the statistical analysis, which is important in the scenario where the same defect affects the mea

surements at multiple spatial locations (as is almost always the case in practical applications). 

We focus on a statistical approach that models the random field at a particular measurement 

location in terms of the field values at neighboring locations. 

Assume that K spatially distributed measurements Yk, k = 1, 2, ... , K have been collected. 

We approach the problem of modeling Yk by breaking it into two stages: We assume that 

• Yk are conditionally independent random vectors with probability distributions 

pYki.Bk (Yki,Bk; v) describing the data (measurement-error) model and 

e ,Bk, k = 1, 2, ... , K form a Markov random field describing the process model. 
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Consequently, Yk follow a hidden Markov model [ 16, 17]. This model can account for both dis-

crete and continuous random fields and measurements. We concentrate on conditionally spec-

ified MRFs, where a consistent specification of conditional distributions is required to ensure 

that the joint djstribution of /31, /32 , ... , f3 K is well-defined, see e.g. [ 18, 19]. 

4.2.2 MRF Model Examples 

4.2.2.1 Discrete MRF for Classification 

Suppose that each measurement k is associated to one of:= classes and let us model f3k E 

{1 , 2, .. . , E} as a discrete MRF. For example, choose the conditional probability that measure

ment k belongs to a class ~ E {1, 2, ... , E} given the class assignments at the neighboring 

measurements as 

P[f3k = ~ I N(k)] = exp [b~- L t c5~ ,d ck,l ], 

lEN (k) d=l 

(4.1) 

where b~, c5~ ,d, and ck,l are the calibration parameters that satisfy 8f. ,d = 8d,f., 8~.~ = 0, Ck,l = cl ,k, 

and ck ,k = 0. Also, ck,l = 0 if the measurements k and l are not corning from neighboring 

locations N(k), which is the Markovian assumption. Here the parameters 8~,d and Ck,l describe 

the inter-class relationships and spatial Markov structure of the random field, respectively. The 

coefficients ck,l may be modeled as functions of the distances between measurement locations. 

For example, denote the kth and lth measurement locations by rk and r 1 and assume that the 

random field is isotropic; then we may model ck,l as a decreasing function of the squared dis

tance (rk- rLf(rk- r t) (see [19]), e.g. 

(r k- rlf(rk- r1) ~ d2, 

(rk- rlf(rk - rt ) > d2
, 

(4.2) 

where d~11N = minvk,l k#L{(r~,; - r 1f(r ~,; - r 1)} and 7J and 1 are the calibration parameters. 

Here, the neighborhood of a measurement k consists of all the measurements that are collected 
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within the cutoff distanced from that measurement, and is denoted by N(k). Note also that the 

calibration parameters should be chosen to ensure that ( 4.1) is a valid probability mass function. 

In the simple case where ck,l is the neighborhood index (i.e. it equals one if l E N(k) and zero 

otherwise) and if classes are interchangeable (i.e. 8e,d = 8 does not depend on~ and d), this 

model simplifies to the isotropic Potts model [20]: 

P[.Bk =~I N(k)] = exp[O · uk(~)Jj { t exp[O · uk(d)] }. (4.3) 
d=l 

where uk ( ~) is the number of neighbors of node k that belong to class ~. In the above model, 

equal weight is given to the evidence from each neighbor. Clearly, for positive 8, this model 

favors probabilistically those classification results where neighboring locations belong to the 

same class. 

4.2.2.2 Distributed MAP Estimation 

We wish to estimate the MRF {3 = [,81, ,82 , •.• , ,BK]T from the observations Yk, k = 1, 2, ... , K, 

where the model parameters are assumed to be known. We compute the MAP estimates of {3 

by performing the following steps for each k: 

(MAP1) collect the current estimates of ,Bl, l E N(k) from the neighborhood of k and 

(MAP2) update the estimate of ,Bk by maximizing the "local" (conditional) MAP objective 

function: 

with respect to ,Bk. 

Here, v and 9 are the data and MRF model parameters, r~spectively. (For example, 9 = 

[ry, {, d, 8e,d, beJT in the model (4.1)-(4.2).) Applying (MAP1)-(MAP2) to each kin turn yields 
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D -Considered pixel 

Figure 4.1 Neighborhood of a pixel. 

a single cycle of an iteration which continues until convergence. In general, this iteration will 

converge to a local maximum of the "global" MAP objective function: 

K 

LMAP(/3) = (:Lln [pYki.Bk(Ykl,lh; v )J ) + ln[p.a(/3;8)]. 
k = ! 

(4.5) 

The above iteration can be initialized using the maximum likelihood (ML) estimates fJ...,tL,k = 

arg max.ak ln[p11ki.Bk (Yki.Bk; v )] which ignore the underlying neighborhood structure. The pro

posed MAP algorithm is closely related to the iterated conditional modes (ICM) in [20] for 

image analysis, see also (1 6, 19, 21]. However, the neighborhood models developed for image 

processing applications are fairly simple. Due to possibly non-uniformly distributed meausre

ments, we allow for more complex neighborhood correlation models, such as ( 4.2). 

4.2.2.3 Simulation Example 

We now apply the above MAP method to the experimental ultrasonic data in Chapter 3 to 

remove false alarms caused by the GLR detector and compare it to the original result of the GLR 

detector. We use the isotropic Potts model in ( 4.3) with neighborhood defined by surrounding 

measurement locations (pixe ls) as shown in Figure 4.1. Our goal is to classify the noisy data 

into ~ = 2 classes. Hence, .Bk E { 0, 1} where one class represents the presence of a defect 
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Figure 4.2 MAP detector. 

whereas the other represents the absence of defects. We use the following data models, 

(Yki.Bk = 0, v ) ""' N(J.lo , 0'~ ) 

(Yki .Bk = 1, v) ""' N (J.li, O'i) , 

where N(J.l , 0'
2

) denotes the Gaussian distribution with mean J.l and variance CJ2 . Here, the data 

model parameters are [J.lo, J-11, 0'6, CJiJT. Since v is not known in general, we propose iterating 

between the MAP and ML clustering algorithms, see [22, Ch. 22], where 

• the ML clustering algorithm is used to estimate v and 

• the MAP algorithm is used to classify pixels into two classes. 

The above iteration is initialized using the GLR detector result in Figure 3.8(a). (Upon conver

gence of the MAP step, we use the obtained pixel classification to estimate the prior probabil

ities for the next ML clustering step.) In the following example, we apply the above iterative 

algorithm to the GLR test result in Chapter 3, see Figure 3.6(a) and 3.7(a), and then compare it 

with the original GLR detector in Figure 3.8(a). The result is shown in Figure 4.2 foro = 4.5. 

Obviously, the above method can eliminate almost all false alarms caused by the GLR detector. 
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· APPENDIX A. GENERALIZED MULTIVARIATE ANALYSIS OF 

VARIANCE 

Problem Formulation 

In this section, we show the derivation of the Generalized Likelihood Ratio (GLR) test 

for the detection problem in Chapter 2 using Generalized Multivariate Analysis of Variance 

(GMANOVA). We consider the following measurement model 

Y = AX<P+E (A.l) 

where Y is an m x N observation matrix and X denotes an unknown matrix with the size of 

j x d. A and <P are known matrices with the size of m x j and d x N, respectively. Here, 

E denotes an m x N matrix of random variables where the columns of E are independent, 

identically distributed (i.i.d.) zero-mean Gaussian vectors having an unknown covariance :E. 

We wish to detect the presence of X: i.e. testing null hypothesis 

1-lo: X= 0 

versus the alternative 

1-lt: X'# 0. 

I • 
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GLR Test for Real Data 

For a real data scenario, under the null hypothesis, the joint probability density function 

(PDF) of the elements of data array Y is given by 

(A.2) 

and the joint PDF under the alternate hypothesis is given by 

where Tr (·)denotes trace, the subscript "T" represents transpose, and I · I denotes the determi

nant. The maximum likelihood (ML) estimate of covariance matrices under 1-lo and 1-l 1 can be 

determined using the following equations: 

~0 - :yyT 
N 

~1 - :(Y- AX<P)(Y- AX<P)T 
N 

The test statistic is, by definition, 

max f1(Y;~,X) maxf1 (Y;~1 (X),X) 
:E,X X 
_m_ax_fi_o...,....(Y_;_:E...,....)- - ~-fi-o(_Y_;___,~-o-) --

:E 

which is equivalent to a test based on 

l~ol 
Test statistic = - . 

minl~1 1 
X 

(A.4a) 

(A.4b) 

(A.5) 

(A.6) 

Since in this case, it is a composite hypothesis testing, i.e. X and :E are unknown under the 

alternative hypothesis, we may use the GLR test as the suboptimum solution, see [ 6]. In general, 
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we assume that the rank of A is j :5 m and the rank of iP is d :5 N. Since both A and iP are 

full rank, AT A and q,~T are positive definite and non-singular. The GLR in [6] ·for full rank 

A and iP is expressed as follows: 

where 

w -

S<PIY -
....... 

R<P<P -
....... 

Ru<P -

~ -

--1 --1 T--1 _ 1 T--1 
Ryy - Ryy A[A Ryy A] A Ryy, 
--1 ...-..T--1-
R<P<P - Ry<PRyy Ry<P, 

~ <J?i!)T, 
N 
1 T -:::::-YiP , and 
N 
....... 1 T 
:E0 = -:::::-YY . 

N 

(A.7) 

(A.8a) 

(A.8b) 

(A.8c) 

(A.8d) 

(A.8e) 

For the model in Chapter 2, we consider the case that the experiment in which the measurements 

are collected is repeated K times. The observation matrix Y can be presented by the series of 

individual observation matrices Y k in K experiments. Here, the matrix Y k of size m x N 

consists of two parts, the testing window Y T,k and noise-only region Z k· In Chapter 2, we 

model the framework using the following configuration. 

N - NK, (A.9a) 

A - lm, (A.9b) 

q; - (0, Idl · · · I 0, Id]dxNK, and (A.9c) 

y - [Y1I · ·· I Yk]mxNK (A.9d) 

- [Zt, y T,11 · · · I ZK, YT,K]mxNK, (A.9e) 
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where I m and I d are the identity matrices of size m x m and d x d, respectively. Here, "0" 

denotes a zero matrix of size d x N - d. By applying the parameters above, the test statistic in 

(A. 7) can be reduced to 

GLR -

where 

We may also rearrange the above test statistic in the form of 

where 

T -

-

-

v -

GLR - lid+ VTT-1Vl 

IT+VVTI 
ITI 

- 1-- T 
Ryy- NYTYT 

K 

1 L [ - - T T] NK (Y T,k- Y T)(Y T,k- Y T) + zkzk 
k=l 
- - T (Y- Y T~)(Y- Y T~) and 

1-
ffiyT· 

(A. lOa) 

(A. lOb) 

(A.lla) 

(A.llb) 

(A.l2a) 

(A.l2b) 

(A.l3a) 

(A.l3b) 

(A.l3c) 

(A.13d) 

Since V and T are respectively in the form of sample mean and covari~~ce, it is clear that 

they are unconditionally independent. We may express T in terms of Gaussian array W of 

I-,, 



www.manaraa.com

43 

dimension j x N I< + j - m - d as fo llows: 

T = WWr. (A.l4) 

Note that in this special case, j = m. 

GLR Test for Complex Data 

For a complex data scenario, under the null hypothesis, the joint PDF of the elements of 

data array Y is given by 

(A.l5) 

and the joint PDF under the alternate hypothesis is given by 

(A.16) 

where the superscript "H" represents Hermitian (conjugate) transpose. By applying the same 

method as in the real data case, the GLR test statistic can be represented by the following 

equation: 

GLR - (A.l7a) 

- H -- -1-
IJd - (1/N) . y T Ryy y T' 

(A.17b) 
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where 

We may also rearrange the above test statistic in the. fonn of 

where 

GLR - /Id + VHT-1V/ 

/T+VVHJ 
ITI 

T - (Y- YT~)(Y- YT~)H and 

1 -
v - VNYT. 

(A.l8a) 

(A.l8b) 

(A.19a) 

(A.19b) 

(A.20a) 

(A.20b) 

As in the real data case, T can be expressed in tenns of complex Gaussian array W of dimen-

sionj x NK + j- m- d as follows: 

(A.21) 
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APPENDIX B. EXPLICIT FORl\1 OF GLR TEST 

In this appendix, we demonstrate the derivation of the explicit form of the GLR test for both 

real and complex data scenarios. 

Real Data Scenario 

For the real case in Appendix A, the GLR test statistic is derived as follows: 

GLR = li d+ VTT- 1VI 

IT + VVTI 
= 

ITI 

(B.la) 

(B. I b) 

where T = wwr. The arrays V of size j x d and W of size j x N K + j - m-dare zero-mean 

Gaussian and independent of one another. Here, we introduce a new quantity K = N K-m-d 

and recall that K ;::: 0. From (B.la), we define the term inside the determinant I · I by the 

following function: 

(8.2) 

The arrays V and W can be partitioned into 

v = [::] 
(B.3a) 

w [::] 
(B.3b) 

.. .. ... ·. .~\ ·c 
\!l ' - • • •• ~ ··: 
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where V 1, V 2, W 1 , and vV 2 are matrices having the size of j 1 x d, j 2 x d, j 1 x K + j, and 

]2 x K + j, respectively. The matrix T can be represented by 

We also define 

T = [wlwf wlwr l 
w2wf w 2w r 

= [Tu T12l· 
T21 T 22 

and then substitute: 

[v f v r ] [T

11 
T

12

] [v 1] 
T 21 T 22 V 2 

V f T 11V1 + v r T 21V1 + V f T 12V 2 + v r T 22V 2. 

The above equation can be rearranged in the form of 

VfT11V1 + vrT21Tu(Tu t 1Vl + VfTn(Tu)-1T l2y2 + 

v r T 22y 2 + v r T 2l(Tn)-1Tll(T u)- 1Tl2y2-

v rT21 (T n )-lTll (Tu t1Tl2V 2 

- (V f + v r T 21(T n)-l) Tll (VI + (Tu)- 1Tl2V2) + 

v r(T 22- T21(Tn)-1Tl2)V2. 

(B.4a) 

(B.4b) 

(B.5) 

(B.6a) 

(B.6b) 

(B.7a) 

(B.7b) 
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In order to simplify the equation above, we may use the following identity of matrix inversion. 

For any non-singular matrix M that can be partitioned into 

(B.7a) 

where A and D are square and non-singular matrices, the inverse version of the matrix M can 

be presented in the form of 

By applying the identity above, we obtain 

and by adding the identity matrix I d, we may express (B.2) in the form of products: 

where 

V - (Vl- T12T2"21V2T)(Id + vrT2lV2)-112, and 

T - (T11
)-

1 
= Tn- T12T'2lT21· 

(B.9) 

(B.lla) 

(B.llb) 

I 
. I 

I • : 
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Clearly, V 2 and W 2 are zero-mean Gaussian and independent of one another. We may represent 

the first and last terms of (B.l 0) by 

(B.l2) 

The matrix V of size j 1 x dis zero-mean Gaussian and independent from T. Since Tis a 

Wishart matrix of dimension j 1 and with j 1 + K degrees of freedom, we may express T in the 

form of 
--H 

T=WW (B.13) 

- -where W is a zero-mean Gaussian array with the size of j 1 x j 1 + K. Thus, the middle term of 

(B.l 0) can be presented by the following equation: 

From the results above, we may conclude that 

GLR - I.C(j, d, K)l 

- I.CU- j1, d,j1 + K)II.CU11 d, K)l 
j-1 

- II I.C(l, d, K + i)l. 
i=O 

(B.l4) 

(B.lSa) 

(B.lSb) 

(B.lSc) 

· :rf' 
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Now, we consider a special case for I.C(j, d, K)l when j = 1, i.e. W is a row vector. We may 

represent 

R 
T - WWT=-Lwl, (B.l6a) 

i=1 
d 

vvr - Lv~, and (B.16b) 
k=1 

L:.K 2 L:d 2 

I.C(i, d, K) I i-1 wi + k-1 vk (B.l6c) - L:R 2 
i=1 wi 

where wi and Vk in this case are the elements of row vectors W and V, respectively. Since Wi 

and vk are zero-mean Gaussian and independent of one another, 2::~1 wl and 2:::=1 v~ are X2 

random variables with K and d degrees of freedom, respectively and 

1 L:.K 2 
i=1 wi (B.l7a) 

1£(1, d, K) I 
- L:R 2 L:d 2 

i=1 wi + k=1 vk 
K d 

- xt3( 2' 2) (B.17b) 

where xt3(n, m) denotes a beta random variable with parameter nand m. By substitu~ing the 

result from (B.17b) into (B.15c ), we obtain the product of independent beta random variables 

as follows: 

1 
j -n (i)(K +i ~) (B.l8a) 

GLR 
- xt3 2 ' 2 

i=1 

- ft (i) ( NK- d- m + i ~) (B.l8b) xt3 2 ' 2 
i=1 

f"V .X(m,NK-d,d) (B.18c) 

where .X(m, n,p) denotes Wilks' lambda distribution with parameter m, n, and p. Recall that 

K = N K - m - d and for the model in Chapter 2, j = m. Obviously, when j = 1, 1/GLR is a 

single beta variable with parameters N K - d - m + 1 and d. 
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Complex Data Scenario 

For the complex data scenario, by applying the same method as in the real case, 1/GLR can 

be represented by the product of independent beta random variables as follows: 

1 
j 

II x~)(K + i, d) (B.19a) 
GLR 

i=l 
m 

= II x~) (NK- d-m+ i, d) (B.1 9b) 

i=l 

rv >..c(m ,NK- d,d) (B.l9c) 

where >..c(m, n, p) denotes complex Wilks' lambda distribution with parameter m, n, and p. 

. . . ' '. •, . . :·>.'· . . •' .... ' ' . ' . . . . .•• .. .J!!~ 
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APPENDIX C. NUMERICAL EXPRESSION OF GLR TEST 

DISTRIBUTIONS 

In Appendix B, even though we obtained the explicit form of the GLR test, there is still a 

problem of computing the exact distribution of the test when j is greater than 1, i.e. 1/GLR is not 

a single beta random variable. In this appendix, we show the derivation of numerical expression 

for computing the exact probability density function and determining decision thresholds for a 

specified probability of false alarms PFA · 

Real Data Scenario 

For a real data scenario, in order to determine the numerical expression, we first consider 

a special case of an expected value of a beta random variable Xf3 with parameters (iii, n). The 

PDF of Xf3 is given by 

f ( - -) 1 m-1(1 )n- 1 
f3 x ;m,n = B (m ,n)x - x (C.l) 

where 0 ~ X ~ 1, iii > 0, and n > 0. Here, B (iii , n) represents ri~:~) and r(n) denotes 

a gamma function with a parameter n . For any positive value k, the expected value of x~ is 

described below: 

11 

xk f f3 (x ; iii , n )dx 

r(iii +n) r (k+iii) 
r( k + m + n) r ( m r 

(C.2a) 

(C.2b) 
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From the result in Appendix B, a Wilks' lambda random variable can be represented in the 

form of the product ofbeta random variables. Thus, by applying the result in (C.2b) to a Wilks' 

lambda random variable A with parameters ( m, N K - d, d) , we obtain 

E[Ak]- [xkf>.(A;m,NK-d,d)dx 

m r( NK2m+i) r( NK-r;;-d+i + k) 
- II r(NK-m-d+i) r(NK-m+i + k) 

t=l 2 2 

(C.3a) 

(C.3b) 

where f >. (A; m, n, p) denotes the PDF of A with parameters m, n, and p. By utilizing the method 

in [23] with the obtained result in (C.3b), the PDF of A, or 1/GLR in this case, can be computed 

using the following equation: 

where J.L is a constant chosen to satisfy 0 < J.L < (N K - m - d + 1)/2; l0 - 1, lr -

L~=l k qk lr-k, and 

I 
I 
I 
I 
I 
! 
I 
l 
i 
i 

I 
'! 
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where Br ( ·) denotes the Bernoulli polynomial of degree r. The probability of false alarms can 

be determined from 

PFA - P(GLR > r) (C.5a) 

(C.5b) 

(C.5c) 

(C.5d) 

where rinc(x, a) is the incomplete gamma function at value X with parameter a. The GLR 

threshold r for a specified PFA can be determined by solving (C.5d). 

Complex Data Scenario 

For a complex data scenario, by applying the same method as in the real case, we obtain an 

equation for the expected value of a complex Wilks' lambda random variable A with parameters 

( m, N K - d, d) as follows: 

E[.>.k] - 11 

xkfA0 (A;m,NK- d,d)dx 

_ ft r(NK- m+i) r(NK -m- d+i+k) 
i=

1 
r(NK- m- d + i) r(NK- m + i + k) 

(C.6a) 

(C.6b) 

where f>..c(A; m, n,p) denotes the PDF of A with parameters m, n, and p. Thus, the PDF of A 

(or 1/GLR) can be computed using the following equation: 

f (A. NK- d d)= [Ilm r(NK- m + j) ]AJ.L-1 ~ lr (-1 A)r+md-1 
>..c 'm, ' . r(N K - m - d + ') L...,. r(r + md) n 

J=l J r=O 

(C.7) 

~~· I 
0 

0 

I • 1 : O • i O 

0 

• • p • > 
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where J-L is a constant chosen to satisfy 0 ::; J-L < ( N K- m- d + 1 ); lo = 1, lr = L::~=1 kqklr-k, 

and 

m 

Qk - ( -1)k+1[k(k + 1)]-1
{ L Bk+1(N K- m- d + j- J.L) 

j=1 

m 

- LBk+1(NK -m+j- J.L)}, k = 1,2, .... 
j=1 

The probability of false alarms can be determined from 

PFA - P(GLR > r) (C.8a) 

- P(A < 1/r) = 1- P(A > 1/r) (C.8b) 

- 1 - J(
1 

fA0 (A)dA (C.8c) 
1/-r 

m f(NK-m+j) oo lr 
- 1 - [ ll r( N K - m + j)] ~ JL(r+md) rinc(tdog T, r + md) (C.8d) 

where the GLR threshold r for a specified PFA can be determined by solving (C.8d). 

I 
I 
I 
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APPENDIX D. SPECIAL CASE FOR GLR TEST 

Problem Formulation and Test Statistic 

In Appendix A, the GLR test for a general model has been derived for detecting the presence 

of the defect signal X. In that case, the elements of X can be either positive or negative. In 

this appendix, we consider the GLR test under a real data scenario for a special case when all 

elements of X are positive. Hence, the detection problem becomes: testing null hypothesis 

1-lo: X= 0 

versus the alternative 

?-l1 :X?: 0 

where X ?: 0 denotes that all elements of X are greater than or equal to zero. We use the same 

n1odel and configuration as in (A. I) and (A.9), respectively. By utilizing the ML estimators in 

(A.4), the test statistic for the above model is given by 

Test statistic _ l~ol 
min 1~1 1 
Xt:O 

(D.la) 

I, 

I 

r 
; 

! 
l 
t 
i 
~ 

~I 

I 
I 
I 
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Recall that flyy = ~0 - '2:~1 (ZkZI + YT,kY;,k). The denumerator in (D.lb) can be 

rearranged in the form of 

where 

z - [Zl . · · ZK]mx(N-d)K, (D.3a) 

YT - [Y T,l ... y T,K]mxdK, and (D.3b) 

q> - [Id ••. Id]dxdK· (D.3c) 

Now we consider Taylor series expansion for II+ AI where I is an identity matrix and A is an 

arbitrary matrix with the the same size as I. The Taylor series expansion is expressed as 

In II+ AI~ Tr(A) + (1/2) · Tr(A2
) + ... (D.4) 

and 

In II+ AI ~ Tr(A). (D.5) 

for a small A. Let L = lim+ (ZZT)-1()'T- Xi)(:YT- Xi)Tj. Assuming that Z has 

a large number of columns, we may simplify the problem under this scenario by applying the 

above approximation as follows: 

(D.6) 
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Hence, minimizing jE11 subject to X !: 0 is approximately equivalent to 

min IE1I - min Tr[(ZZT)-1(YT- xq,)(YT- Xq,)T] 
Xt:O Xt:O 

(D.7a) 

K d 

- L L min (YT,k,i- rei)T(zzT)-I(YT,k,i- rei) 
k=I i=I reit:O · 

(D.7b) 

where [YT,k,l YT,k,2 ... YT,k,d] and [ret x2 ... a::d] are column vectors of Y T,k and X, respec

tively. By utilizing the method in [24, Ch. 4.2], the optimality conditions for minimizing the 

above equation subject to Xi ~ 0 can be expressed as 

Xi >- 0, 

-(ZZT)-1(YT,i -xi) >- 0, and 

XiJ[(zzT)-1 (YT,i - Xi)Ji = 0, j = 1, 2, ... , m, 

(D.8a) 

(D.8b) 

(D.8c) 

where YT,i = (1/ K) · 2:~1 YT,k,i and xi,i denote the elements of Xi. The GLR test can be ob

tained by substituting the estimator of X, denoted by X, that satisfies the optimality conditions 

in (D.8) into (D.lb) as follows: 

(D.9) 

For the energy detector, the test under this scenario is given by 

(D.IO) 

where the ML estimator X in this case, is obtained by replacing the negative elements of Y T 

with zero. 

! e. 
I 
l 
i 

f 

l 
I 
I 

I 
• 



www.manaraa.com

58 

Newton-Raphson Method 

In practise, it is not convenient to find the estimator ofX for the GLR test that satisfies the 

optimality conditions in (0.8). By applying the method in [24, Ch. 11.8] and Ne:wton-Raphson 

algorithm, we obtain an iteration for computing the approximate estimator of Xi as follows: 

(0.11) 

where xrew is an updated Xi and xi1d is Xi in the previous step. Here, J.L is a constant chosen 

between 0 and 1. The matrix H and vector g are determined using the following equations: 

H - t (2(ZZT)-1) +.A, and 

g - -t [2(ZZT)-1(YT,i- x~ld))- b. 

where tis a positive constant, b = [1/xi,l ... 1/xi,m]T, and 

1 0 ~ '• 

0 1 
x;,; 

A= 0 0 

0 0 

0 

0 

1 
?; '• 

0 

0 

0 

0 

1 
xlm 

(D.12a) 

(D.l2b) 

The iteration is terminated when xrew and xi1d are not much different. When t is large, the 

approximate estimator of Xi approaches the true estimator that maximizes the GLR test. 
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